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The process of fusion and subsequent crystallization is examined for a thin surface 
layer of a massive specimen subjected to an impulsive thermal load. 

Fusion of metals by powerful thermal fluxes permits different microstructures to be ob- 
tained for thin surface layers, including fine-crystalline and amorphous [i, 2]. Obtaining a 
definite surface layer microstructure is due primarily to the thermophysical aspects of the 
action of radiation on a metal. Determination of the temperature field during the melting 
and subsequent crystallization is a nonlinear problem even in the one-dimensional case with 
constant thermophysical material characteristics because of the presence of a moving phase 
interface. The temperature distribution in the liquid i = 1 and the solid phase i = 2 is de- 
scribed by the equations 

02T~,= 1 OT~ 

Ox ~ a i Ot (1) 

During the action of a pulse t ~ z :on a surface x = 0 a constant heat flux of density q 
is given 

\ Ox /Ix=o : q "  (2) 

The following heat balance holds on the phase interface 

-~ k~/J~=~ = Q~ or ~ \  a~ . ~=~ (3) 

We have the temperature field 

2 V ~  (4) 

at the initial instant of melting t0(T2(O, to) = Tk) in the solid phase. The temperature of 
the phase interfacial surface is constant during melting and equals T k and there is no heat 
flux at infinity 

: = : 0 ,  = 0 .  
Ox ~=| (5) 

After termination of the melting the velocity of interphasal boundary motion depends on 
the instantaneous temperature T c on the crystallization front, which varies in time because 
of the variable supercooling [5, 6] 

T,I.= U = T~I~= U : To (t), 

dy 
- -  rod exp (--U/kTc) [1 - -  exp ( - -  AG/kTe) ]. 

at  

( 6 )  
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Difficulties associated with satisfying the stability criterion occurs in solving the melting 

problem by difference methods [2, 4, 7]. Weuse the method of solving ablation problems 
based on the method of lines [4] and we extend it to two-phase domains. We go over to the 
dimensionless quantities F~=T~/T~, O=Te/T~, Q=Qo/cT~, ~=l~, ~0=te/% ~G~T~: =~(I--@), u=U/kT~, • 
x/l, ~=g/l, l=2gma~ , where m is the normalization constant introduced for convenience in 
solving problems on an electronic computer so that the characteristic depth of heat pene- 
tration 2~would not exceed Z which permits taking the solution of the problem (1)-(6) from 
the interval 0~ x ~ =over to the interval 0~x~ i. We introduce the coordinates r and p 
as follows r=• and p =  (I--• . This substitution determines the position of the 
boundary z=~ at the point r = p = I, and the boundary coordinates % = 0 and ~ = 1 go over 
into r = 0 and p = 0. In conformity with the method of lines, we divide the planes r, 
and p, ~ into N subdomains by means of the lines r = nAr and p = nAp(n=0, | .... , N, Ar=Ap= I/N) 
Writing the spatial derivatives with respect to the new coordinates r and p in difference 
form, and the time derivatives a~ong the corresponding lines, we arrive from (1)-(6) at the 

following system 

OFI,n 1 al N~ n d~ 
b~ -- 4m a~----q-. (FI,,~+~ - -  2FL,~ + F~.,,_I) + 2~ d~ (FLn+~--FL'~-~)' (7) 

OF2... 1 ( N ) 2 n d~ (F2,~+~_F2,~._x) ' (8) 
b-----~ = 4----m ~ (F2,,~+1 - -  2F2,,, + F~,,,_a) 2 (1 - -  ~) ci~- 

d~ N { O~)-- F2,N_ 1 L1 } 
d~ -- 4Qm 1 --~ ~- ~--~--(O--FI ,N_I)  , (9) 

F , _ ,  = F , , , -b  ~ V ~ o  H ( 1 - - ~ ) ,  

Fl .iv = F2,~v = @ (~), F2,-! = F~.I = F..,o = 0, 

(I0) 

(ll) 

F~(p, ~0)----exp { ( 1 - - p ) 2 m  1 1 S  ~-~ { ~ - m - - }  ~0 ~ - -  T o  (1 - -p )  erfc ( l--p)  ~ 0  ' (12) 

( __~){ [ I--~ ]} N /f__{ ~--F2,N_ 1 ~1 } 
exp -- I -- exp -- h ~ -- Qmvod 1 -- ~ -b ~ (~ -- Fa ,N--l) " (13) 

For ~ = 1 the equations (7)-(12) describe the melting process. At the time ~0 a very thin 
liquid phase layer $0~ 1 appears. The temperature distribution in this layer can be con- 

sidered linear F1(r, ~0) = 1 ~- ~0%2(i-- r) V~-~0/%1 �9 Given ~0 or the overheating AF0 = FI (0, ~0)-- 
1 = ~2~0V~-~0/%1, we obtain the initial temperature distribution in the liquid phase. We took 
AF0 = I0-2-i0 -~ in performing the numerical computations. Termination of the pulse occurs at 
the time ~x = I, however, the melting continues until the time ~z corresponding to the dis- 
appearance of the velocity of the phase interface motion ~(~2)=0 . The crystallization rate 
for ~ > ~2 is governed by the quantity ~($), which we can find by using (13). The solution 
of the system of differential equations ($)-(9) with condits (10)-(13) taken into account 

is carried out on the ES-1060 electronic computer' 

We find the analytic solution of the problem (1)-(6) by the method of Biot [4]. The 

temperature distribution for ~0<~ ~-~ 1 is approximated as follows 

FI=f I+ T(t--I) ,0~<~<~, 
(14) 

F =  

i = - -  , ~ < •  

s 
Here  f = F1]~=0, ~ +  s i s  t h e  d e p t h  o f  h e a t  p e n e t r a t i o n  i n  t h e  m e t a l  i n  t h e  t i m e  ~ . In  p l a c e  
of  t h e  h e a t - c o n d u c t i o n  e q u a t i o n  (1) we w r i t e  t h e  v a r i a t i o n a l  e q u a t i o n  and e n e r g y  c o n s e r v a t i o n  
law 
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4~-~ 13 21 1 
-- s , (15) 
7 8 s 

f~ lnf_~Ql~ + S - - S o  1 / / _ ~ _ o  (~_~o) ' 
13 f -  1 3 -- 4 . (16) 

where ~ = clpl/c~p2, QI = I--~-~ Q, s 0- 0,75 ~0 is the depth of heat penetration at the time t0 . 
The boundary condition (2) takes the form 

~I V t0 = ~ ~ f (f-- i), (17) 

while taking (17) into account the Eq. (3) on the interphasal boundary becomes 

1 V ~ 2 (18) 
4Q'~ = 7E-- to s 

The boundary conditions (5) are satisfied automatically by selecting the temperature dis- 
tribution in the form (14) and the initial condition (4) is approximated with good accuracy 
by the expression (i--~r 2. 

We are interested in the melting modes for which evaporation from the surface can be 
neglected, i.e., when f is substantially below the melting point. We will consider the over- 
heating 8 = f -- 1 < i and we represent s in the form s = s0(l + w). We substitute (17) into 
(16) and limiting ourselves to square terms in 6, we obtain 

" ~  [~ '~ {~1 (~2"-~-(I~"~-Q1)(~-- - '3  W 7 -~o (~ - -  ~o) - -  sow =0.  (19)  

Combining (15) and (18) we have 

1 1 / - ~  13 
Q (1 q- 6) z V - ~ - o  q- T SoW = 

1 
s0,1 +o, (20) 

The combined solution of (19) and (20) is performed by successive approximations by first 
linearizing (20) as follows 

1 1 V"---a - _ _  13 - ( ~  Q_) (I - -  ~i) 
Q- (1 + ~)'. ~o + - 7 -  ~oW~ = - -  + -  So ' (21) 

! 

I j" 6j (~) d~. 
~) = (1--to) r (22) 

Here 8j is the magnitude of the overheating in the j-th approximation. 
mation 60 = O. We find from (21) 

# 

wj = ~ { 1 - -  exp [-- B (~ --  ~o)]}, 

where 

In the zeroth approxi- 

(23) 

B =  7 ( }  1 1 3  q2)  1 .s__~_, 7 1 1 /  n 1 - - -  - k  --=" b j  = B _ . 

13 Qs o to (1 +6 j )  ~ 

To simplify the Calculation ~5 we introduce the mean velocity Vmj = wj(~i)/~l, HI = i -- g0, 
then wj(~) = Vmj( ~ -- t0) and Nubstituting this last relationship into (19), we obtain 

where 

A = ,  

A 
6i+ 1 = -~ {[1 -[- gj(~--~o)l 1 / 2 -  1}, 

[3-]-Q1 4 / - -~-  1,513 -{-- Q1 ( 3  I / f  
1,5~ + Q1 ' gj  : "--3-- ~ t0 (~ -~ QI) 2 . - -  - -  

o ) 
to  SOVmj " 

(24) 
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Rewriting (22) with (24) taken into account, we have 

-- A f 2 [(1 @-g~h) a / ~ -  1 ] - - 1  1 �9 
J (25) 

Therefore, by finding go in the zeroth approximation, we obtain ~ from (25). We then de- 
termine gl and continue this process untilthe necessary accuracy ](~+i--6~)/~I<<I is achieved. 
From (24) we find the final value for ~(~), (17) yields the position of the phase boundary 
~(~), and (14) yields the temperature distribution. 

Melting continues a certain time ~ = ~ -- 1 after termination of the pulse because of 
the energy stored in the liquid phase. The surface temperature f is hence reduced. At the 
time ~= the veiocityof interphasal boundary motion vanishes and melting ceases. Then ~ and 
s can be described for i ~  in the form 

= ~1 [1 - -  (~ - -  1)/lh], s = s~ (1 -q- ~), 

where 

= (~ - -  1) (COo-- 14~/13s~), r = 7 (21/8s~ - -  2~1)/13Sl; 

/ ~ ,  ( ~ r r t )  2 ~1~2 } / {~ 1 [ # ([~ "-JI- Q1) "~" 
r1"=13~1[ 2 sl 1 - -  3 3 ~,1 ' 

3 ~ j - - f -  -5- s, - 13;~6m (1 - ~m/3) ,6r~  = I (g~)--  1. 

We approximate the temperature distribution during crystallization ~ ~ ~2 as follows 

F = J F1 = f_(f_~)• 0 ~ < •  
/ F2 q) { 1 - -  (~ - -  ~)/s} z, ~ •  (26) 

The variational equation, energy conservation law, and heat-balance equation take the form 

13s/Ts -f- 15~ /14~  Jr  4~/s = 21/8s z, (27)  

[~ (q~ -t- 2f) + $ s / 3  .,-t- Q~; = ~ , (28)  

~'1 (f - -  ~ ) / ~ ;  = 2Q~ + q~ls. (29) 

Introducing the mean cooling rate at the crystallization front ~= 1 -- en, N = ~--~2 for small 

overcoolings, we obtain from (6) 

= - -  vleu~ exp ( - -  eU~l), (30)  

where 

~1 = ~od gx-]ah exp ( - -  u)/2u. 

Integrating (30), we find 

-= ~ - -  ~a { 1 - -  (1 -}- Uerl) exp ( - -  uerl) }. (31) 

It follows from (31) that for ~K/$=<l(~=vl/e u) the interphasal boundary does not emerge on the 
surface, i.e., either a thin amorphous layer or a finely crystalline coating is formed because 
of homogeneous generation. The rate of heterogeneous crystallization grows with the pulse 

duration. 

In the case ~H/~2<I we introduce the mean velocity of interphasal boundary motion v by 
using (31) as follows 

I (1 -t- Ue~l) exp ( - -  Uerl) drl = f (1 - -  rl/rlo) drl, (32)  
b 
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where rio = ~w~v yields the time of crystallization termination $o = ~'~-~10, " =  ~---vN From 
(32) we haveN0=4~/v~, i.e., v=v~/4. Writing the change in surface temperature in the form 
f = f2 -- y~, we determine the time ~s, at which equilibration of the temperature in the liquid 
phase occursf(~s)___gO(~):~s=~+~,where ~=~/s~(?--~) . Rewriting the system (27)-(29), we 
f ind 

y = o)~/S~ -~- e(gs, S = s~ + V~], (33)  

where 

= v~ ~'[~4 (1 + 2/~ + 3Q~/~)  [~ s - - ~  / ~[5 (1 -}- 2(o3) -+- ~ s~ 

15 7 ' 21 ) 
0 ) 1 = - - ~ S 2 ,  ~)1 = - ~  / - -~S2  -~ ~1 , ~2 = ~)1 -Jr- f018] 

s~ - - ~  1 + 2Qs~. - -  

. s~ 4 

(41  ~ 15 ) 

For ~e, ~(~)=0 and the combined solution of (27) and (28) yields 

Thus, for ~H/~2<I 
on the surface. 

(35) 

s {s2 . 147 }~/2 
= c -[- ~ (~ - -  ~c) �9 (36) 

an amorphous or fine-crystalline coating of thickness ~c=~2--~ is formed 

In the case of rapid crystallization ~(~e)=0, No/So = (~0--~2)/~c<<I the velocity of phase 
interface motion (30) can be written as ~=--vlueN and the solution of the problem (27)-(29) 
becomes 

(37) 
= ~ { 1 - -  ( ~ 1 ~ ) ~ ) ,  nc  = (Cd~'~eu)  ~i2 �9 

(38) s = s~ + (so - - s ~ )  r l /% s o =  -7 -  (1 - -  e~]o); 

4VlU ~ 1 - -  )h In 21~ .12 
~2 I 1 -+-2Q'clus ~ I " ( 3 9 )  

For ~i-~o the depth of heat penetration is described by (36) while the surface temperature 
equals [=3~/~0~f �9 

Results of computations on the basis of the analytical expressions are presented by 
dashes in Figs. 1-4 while the numerical solution executed on the ES 1060 is presented by solid 
lines for steel [5]: ~ = %~ = 0,233 W/cm.~, ci = c~ = 0,672 I/g.~, al = as = 0,0463 cmZ/sec, Q0 = 27:~ 
J/g, T~= 1400 ~ v0= 1013 c -I, d=8.10-Scm, U=30000 cai/mole, r 

The velocity of the interphasal boundary motion (Fig. la) and the rate of surface heating 
(Fig. 2) are maximal at the initial instant of melting and equal, respectively, #0=q(l--8/3~)~pQ0 
and (aT/at)It=to=q#o/%1 Where the position of the curves corresponding to the melting are 
determined by the quantityto/TNl/q% in Fig. la and 2, i.e., by the combination of radiation 
parameters q and T. The growth of q or T results in an increase in the depth of melting and 
the:Surface temperature at the time of pulse termination (Fig. 3). Still a certain time 
T < t < t2 after pulse termination melting proceeds (see Fig. i) but the surface temper- 
ature diminishes abruptly (Fig. 2). The cooling rate during crystallization decreases, ex- 
actly as the heating during melting, with both depth and time (Fig. 2). However, the growth 
of the quantity q results in an increase in the heating rate but a diminution in the cooling 
rate. The surface heating rate at the beginning of melting is independent of T, while the 
cooling rate at the time of pulse termination drops abruptly with the growth of t0/T = 0.5, 
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Fig. i. Position of the phase interface: a) during 
action of the pulse t0~t~ ; b) after pulse termi ~ 
nation t > T, 0 and 0' -- T = 10 -6 sec; 1 and i' -- 
i0 -" sec; 2and 2' -10 -2 sec; 3 and 3' -- 1 sec. 

Fig. 2. Temperature change on the sur- 
face (i and i') and in the depth of 
the melt x/y = 0.8 (2 and 2') during 
melting and crystallization (T = I0 -~ sec). 

where this latter exceeds the former substantially in magnitude, thus, by an order for 
(Fig. 4). Consequently, the position of the phase interface during crystallization depends 
strongly on the pulse duration (see Fig. ib). As it diminishes the cooling rate grows and 
heterogeneous crystallization encloses a st:ill smaller part of the melted layer, thus for 
�9 = 10-6sec it is practically nonexistent. 

The graphs presented display a good correspondence between theanalytical expressions 
obtained by the Biot method and the numerical solution of the problem on the electronic com- 
puter. However, utilization of the averaging (22)in solving the melting problem (14)-(18) 
by the Biot method as well as giving the initial condition in the liquid phase in the numer- 
ical solution on anelectronic computer does not permit consideration of the most initial 
stage of the melting, the emergence of the velocity of the phase boundary motion on the maxi- 
mal value y0. The initial stage of the melting was examined in [8] on the basis of an approx- 
imate variational solution of the ablation problem, however its description can be developed 
by starting from the exact solution of the heat conduction equation [9] 
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o,3 o,5 qz o,9 to/z 

Fig. 3. Surface temperature (i and 
I') and depth of melting (2 and 2') 
at the time of pulse termination. 

q 2 T (x, t) ---- -i- 

- - 2  ]//a(t--T----~)exp ( 
:~ 

t . 

Qo 

to 

exp ( xZ x _ 

4a(t ~)  --kxerfc '~--  
- -  2 ] / a  ( t -  T)/  

(40) 

The expression (40) is an equation to find the position of the interphasal boundary for x = 
y(t). Let us introduce the dimensionless quantities: 0 = ( t - - l o ) / t o ,  ~ = ( t - - T ) / t o ,  ~ = ( t - - ~ ) / ~ o ,  z = 

y/2~a~o; 0, ~, N, z ~ I, and we seek the quantity z governing the position of the phase inter- 
face in the form of the series z=~0 /Q-k~ l /@@~/Q3@ . . .  

In the melting case we have from (40) to the accuracy of linear terms in z 

o 
2Q (~) d~ 

V 1 +-o - -  V U z  ~ -  o v : ~ - - - ~  - I.  

Collecting coefficients of identical powers of Q,Z we obtain a system of integrodifferential 
equations 

2 4d~ V 1 + o i = 1, 
V ~  ~ v o - - ~  

+ 2 ~ ~id~ -- O, i =  1, 2. qoi-1 
(41) 

We carry out the solution of the system (41) by using the Laplace-~arson integral transform 
[i0]. After appropriate manipulations we obtain from the first equation of the system 

1 03/2 
~0 (0) -- 2 V ~  {(0 -~ 1) arctg Vg' --V0} ---~'3 V~ " (42) 

Applying the  Laplace-Carson  t r ans fo rm to the  second equa t ion  of the  system i = 1 and us ing  
the  s o l u t i o n  (42) fo r  ~0, we f ind  
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0 

2 

Fig. 4. Surface heating tj = to (i 
and i') and cooling tj = t2 (2 and 
2') rates. 

6 ( 0 +  1)(]/1 + 0 - -  1 ) - -  ~-- 16 

All subsequent terms ~i are found analogously by using the value ~i-l , obtained from the 
preceding step. We have for the first terms of the series expansion of z(8) 

Z(O)~-1  031~ 1 "V~,o 2 + l_l._ ] / ,~85/2  _ _ 3 / ~  0~-~ - . . .  (43) 
Q 3 ( ~  QZ 16 Qa 30 192Q ~ 

Using the first term in the expansion (43), we find the duration of the initial stage of 

melting O~ = [~(1--8/3~)/212"0,056-. fromthe conditions z(OH) = z o, z o = ]/~(1--8/3~)/4Q, , . For 0 < %  
t h e  s e r i e s  (43)  c o n v e r g e s  s u f f i c i e n t l y  r a p i d l y  ( t h e  r a t i o  o f  t h e  a b s o l u t e  v a l u e  o f  t h e  f o u r t h  
t e r m  t o  t h e  f i r s t  i s  0 . 0 8 4 ) ,  i . e . ,  by l i m i t i n g  o u r s e l v e s  h e r e  to  t h e  f i r s t  t e r m  i n  ( 4 3 ) ,  we 
can  s p e a k  a b o u t  t h e  l a w  o f  i n t e r p h a s a l  b o u n d a r y  m o t i o n  z % 0 ~ /~ .  The i n i t i a l  s t a g e  o f  t h e  
m e l t i n g  a c q u i r e s p h y s i c a l  a s  w e l l  a s  m a t h e m a t i c a l  mean ing  w h e n t h e  d e p t h  o f  m e l t i n $ i n  t h e  
i n t e r v a l  0~(01>0~) s u b s t a n t i a l l y  e x c e e d s  t h e  i n t e r a t o m i c  s p a c i n g  d/yo~O,1, Yo=Z(O,)2[ato �9 In  
o t h e r  w o r d s ,  t h e  r a d i a t i o n  power  s h o u l d  be  s u f f i c i e n t  f o r  t h e  m e l t i n g  q>qc, qc=Tak~ /a~ /2  i s  
t h e  e n e r g y  f l u x  d e n s i t y  f o r  which  t h e  m e l t i n g  t e m p e r a t u r e  on t h e  s u r f a c e  i s  r e a c h e d  a t  t h e  
t i m e  o f  p u l s e t e r m i n a t i o n  b u t  does  n o t  e x c e e d  t h e  max ima l  v a l u e  q<qm, qm=%TaO~/=/3OdQ , o t h e r -  
w i s e  the emergence of the velocity of phase interface motion at the magnitude z0 would occur 
so rapidly that the depth of melting after this time would be microscopic. The inequality 
qe<qm yields the necessary condition for macroscopicity of the melting in the initial stage 
~>xm, x~n=ilSdQ)~/O~a , f o r  s t e e l : q m - - l O  7 W/cm ~and Tm-----lO-~sec. I f  0 1 < 0 ~ ' ,  i . e . , q < q e ( l ~ - O , 5 O ~ ) ,  
then the melting process is described by. the law z ~ 8~/z, and the depth of melting zl = z(01) 
is macroscopic for q>qc(l +0,5~), ~= {15dQ~) ='~s The condition 8~>~ is equivalent to ~>~m 

The position of the phase boundary during melting after:pulse termination �9 < t < t~ is 
determined according to (40) by the equation 

01 

2Q 1 
1 = -V 1 + 0 - -  V~-  exp . . . .  u  er[ zd~ 

Vk-. V6--~-- ~ 

0 

(44) 

Since an increase in the depth of melting after pulse termination is insignificant (z2--zl)/zl<<l, 
z 2 = z ( t J ,  z l = z ( ~ )  t h e n  to  f i n d  ~o f r o m  (44) we can  w r i t e  

1 = 1 / 1 + 0 - -  Y~-exp \ - -  ---~--] Y ~  o o 

Using (42) for ~0 and rewriting the first integral in (45) and then applying the Laplace-- 
Carson transform, we find 

520 



o.e,. (") V*-- 
% =  %(0~)+ 2 V-------~ 3 V~- 2 (r 2z~)erfc - - ~  + 2 z  z exp -----{--/j. (46) 

At the time of termination of the melting t 2 = ~+~t0, ~0(~) = 0. Rewriting (46), we obtain an 
equation to determine ~ 

0~/~ (1 Ol/~z~ ) 2 
-- = erfc~ + " ~  -~~ exp ( -  ~~ (47) 
(0 

where ~-~ z~l'V~. The value of ~ can be found graphically. Thus, for steel with O1 = 0.i we 
have z~ = 1.2"10 -2 and we find ~ ---- 4,7.10 -s from (47). Since ~ (< 0~ (( I, then to find %(~) , 
i = i, 2, ..., there is no need to solve the complex integrodifferential equation (44) but by 
using the conditions ~(~) = 0 we can write ~---- ~(01) (l--~/~)~, from which %(~)----%(0~)+ 
~(0~)~(I--~/2~), i = i, 2 ..... To find %0]) crystallization t > t2 we have from (40) 

0 0 0 

This equation is solved by an operator method by using the relationships (42) and (46), 
consequently we obtain 

%=%(,~) 1 
2 V~ {(~ + *2) arctg (~1%)~/2 _ (~r (48) 

In the initial stage of crystallization N<~2 we have from (48) 

q)o = q)O ( ~ )  - -  TI3/2/3 ( ~ 2 ) 1 / 2  

The time of termination of crystallization t3 = t2 + tons corresponds to the emergence of the 
phase boundary on the surface, i.e., %(N8)=0- Rewriting (48) withNs~2 taken into account 
we obtain N s = 4 % ( r  Since 81 < I, then Na<[01, i.e., crystal- 
lization proceeds at a higher velocity than melting. For ~(N), i = i, 2, ..., by taking 
~i(N3) = 0 into account we can write ITil = ]% (~2)I(I -- N/N3) �9 To find the surface temperature 
T(0, t) during the melting and subsequent crystallization we set x = 0 in (40) and going over 
to dimensionless parameters with z~ 1 and ~01~I , x = 0 taken into account we obtain 

f = I + (~z err (zlV~)-- V~(l -- exp (-- zZ/~)). (49) 

For t0</<~ we have f=lq-~z from (49) by limiting ourselves to the first term in the ex- 
pansion of z:f = 1 + es/23Q or returning to dimensional quantities 

T(O, t)=T~+. 8q3c [ a(t--to) ] 3/2, 
3OoT~ 3 n (50) 

which describes the change in temperature in the initial stage of melting. 

NOTATION 

T i, temperature (the subscript i = i refers to the fluid and i = 2 to the solid state 
of the material); Tk, melting point; Tc, temperature on the crystallization front; x, coordi- 
nate measured from the surface deep into the material; t, time from the beginning of action 
of the impulse; T, pulse duration; q, flux density; ai, thermal diffusivity; %i, heat con- 
ductivity; ci, specific heat; a=a~; ~=~2; c=c2; 9 , material density; Q0, heat of fusion per unit 
mass; y, position of the phase interface; to=(TKL/2q)2a/a , time of the beginning of melting; 
~0, mean frequency of the thermal vibrations; d, characteristic dimension per atom; U, acti- 
vation energy of atom displacement in the fluid; k, Boltzmann constant; AG=L(I--Tc/T~) , change 
in thermodynamic potential during passage of the atom from the liquid into the solid phase; L, 
heat of fusion per atom; h=L/kT~; ~=Tc/T~; Fi.f, ~, • ~, 0,% 7, ~,z,s,~, dimensionless parameters 
that describe Fi, temperature distribution; f and ~ , surface temperature and the phase 
interface;• p , spatial coordinate;~,0,%~, time; z, ~ , position of the interphasal boundary; 
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s, depth of heat penetration measured from the phase interfanial surface; 8, liquid overheat- 
ing on the surface above the boiling point; ~i, components of the expansion of z in powers 
of Q_l; Q=Qo/cT~;H(I--~) , Heaviside function; ~j=~(~);sj=s(~j); fj=f(~); ~, instants of time; be- 
ginning of melting j = 0, pulse termination j = i, melting j = 2, crystallization j = c, 
temperature equilibration in the liquid phase j = 3, e=emWTK; y=ym?/F~; ~ and ~ are mean 
cooling rates of the interphasal and external surfaces. 
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A PHYSICAL MODEL FOR SUBLIMATION OF A CONTINUOUS MATERIAL IN 

AN UNSTABLE DOMAIN 

A. Z. Volynets, A. V. Rozhdestvenskii, 
L. E. Melamed, and S. M. Brazhnikov 

UDC 536.24:536.423.1 

A physical method is developed for the sublimation process during conductive energy 
delivery, which permits determination of thecOnfiguration and velocity advancement 
of the phase separation boundaries. 

Known methods of analyzing processes associated with the solid--vapor phase transition 
are based on models in which the position of all points of the interphasal boundary is deter- 
mined by ore coordinate, i.e., the boundary is considered a plane cylindrical of spherical 
"one-dimensional boundary." However, such an approach often yields results that diverge 
substantially from the data of practice. An attempt is made in this paper to analyze the 
sublimation dehydration process during conductive energy supply under conditions when the 
stability of the one-dimensional sublimation front is spoiled. The instability of a one- 
dimensional interphasal boundary is understood to be that development of the process for 
which any fluctuations causing deviation from a one-dimensional surface (lunes, cracks, etc.) 
that are inevitable under real conditions, increase monotonically. The advancement of the 
different interphasalsurface sections here occurs at a dissimilar velocity because the 
surface itself acquires a complex configuration. Therefore, necessary for a correct analysis 
of the process is the determination of the local rate of phase transformation front advance- 

ment. 

Underlying the physical model is theassumption that the single reason causing a change 
in phase transition boundary configuration is entrainment of the substance because of its 
sublimation. Any random distortion of the plane front resulting in diminution of the distance 
to the heating surface, is accompanied by an increase in the heat flux in the fluctuation zone 
because of growth of the temperature gradient. In turn, this effect increases the local 
velocity of the process, which causes a further development of fluctuations. Consequently, 

Moscow Chemical Machine:Construction Institute. Translated from Inzhenerno-Fizicheskii 
Zhurnal, Vol. 52, No. 5, pp. 727-731, May, 1987. Original article submitted February 9, 

1986. 

522 0022-0841/87/5205-0522512.50 �9 1987 Plenum Publishing Corporation 


